
https://nexteam.co.ukchris@nexteam.co.uk

PostgreSQL Tips & Tricks For
App Devs

Chris Ellis - @intrbiz@bergamot.social

Work Smart, Not Hard!

PostgreSQL Conference Europe 2025 - Riga

https://nexteam.co.ukchris@nexteam.co.uk

Hello!
● I’m Chris

○ IT jack of all trades, studied Electronic Engineering
○ These days, mostly a technical architect
○ Spend most of my time building apps on top of PostgreSQL

● Been using PostgreSQL for about ~20 years
● Worked on various PostgreSQL and IoT projects

https://nexteam.co.ukchris@nexteam.co.uk

https://nexteam.co.ukchris@nexteam.co.uk

<3 PostgreSQL

https://nexteam.co.ukchris@nexteam.co.uk

Right Tool For The Job?

https://nexteam.co.ukchris@nexteam.co.uk

Text Search

https://nexteam.co.ukchris@nexteam.co.uk

AS A: customer

I Want: to be easily able to find an
applicable fault code for my appliance
when raising a repair

So That: to get a better chance of my
appliance being fixed first time

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Simple

SELECT *
FROM reference.fault_code
WHERE
 to_tsvector('english',

title || ' ' || coalesce(description, '')
)
 @@ to_tsquery('english', 'leak');

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Simple Yet Fast

CREATE INDEX fc_text_idx
ON reference.fault_code
USING GIN
(to_tsvector('english',

title || ' ' || coalesce(description, '')
));

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Simple Yet Fast

Seq Scan on fault_code (cost=0.00..870.51 rows=15
width=170) (actual time=0.084..24.966 rows=37
loops=1)
 Rows Removed by Filter: 2978
Planning Time: 0.172 ms
Execution Time: 25.069 ms

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Simple Yet Fast

Bitmap Heap Scan on fault_code (cost=3.03..22.53
rows=15 width=170) (actual time=0.044..0.167 rows=37
loops=1)
 Heap Blocks: exact=20
 -> Bitmap Index Scan on fc_text_idx
(cost=0.00..3.03 rows=15 width=0) (actual
time=0.027..0.028 rows=37 loops=1)
Planning Time: 0.308 ms
Execution Time: 0.271 ms

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Realistic

ALTER TABLE reference.fault_code
 ADD COLUMN vector TSVECTOR;

CREATE INDEX fc_vector_idx
ON reference.fault_code
USING GIN (vector);

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Realistic

UPDATE reference.fault_code
SET vector =
 setweight(

 to_tsvector(coalesce(category,'')), 'A'
) ||
 setweight(

 to_tsvector(coalesce(description,'')), 'B'
);

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Realistic

SELECT
 ts_rank_cd(vector,
 websearch_to_tsquery(…)), *
FROM reference.fault_code
WHERE vector @@ websearch_to_tsquery(
 'english', 'leaking door')
ORDER BY 1;

https://nexteam.co.ukchris@nexteam.co.uk

AS A: complaints analyst

I Want: to be able to filter call
recordings by matched keywords / topics

So That: to prioritize which calls to
proactively investigate

https://nexteam.co.ukchris@nexteam.co.uk

Tags / Topics / Keywords

CREATE TABLE comms.call (
 id UUID NOT NULL,
 phone TEXT NOT NULL,
 transcript JSON NOT NULL,
 …
 topics TEXT[] ,
);

https://nexteam.co.ukchris@nexteam.co.uk

Tags / Topics / Keywords

SELECT *
FROM comms.call
WHERE topics @> ARRAY['breakdown'];

SELECT *
FROM comms.call
WHERE topics @> ARRAY['breakdown', 'boiler'];

https://nexteam.co.ukchris@nexteam.co.uk

Tags / Topics / Keywords

CREATE TABLE comms.call (
 id UUID NOT NULL,
 phone TEXT NOT NULL,
 transcript JSON NOT NULL,
 …
 keywords JSONB ,
);

https://nexteam.co.ukchris@nexteam.co.uk

Tags / Topics / Keywords

SELECT *
FROM comms.call
WHERE keywords @>
 '{"make": "bosch"}'::JSONB;

https://nexteam.co.ukchris@nexteam.co.uk

Tags / Topics / Keywords

CREATE INDEX topics_idx
ON comms.call USING GIN (topics);

CREATE INDEX keywords_idx
ON comms.call USING GIN (keywords);

https://nexteam.co.ukchris@nexteam.co.uk

GIS

https://nexteam.co.ukchris@nexteam.co.uk

AS A: customer

I Want: to find classes at venues near to
me

So That: I can book classes that I can
easily get to

https://nexteam.co.ukchris@nexteam.co.uk

Location Search

CREATE TABLE club.venue (
 id UUID NOT NULL,
 name TEXT NOT NULL,
 description TEXT NOT NULL,

address TEXT NOT NULL,
 location POINT
);

https://nexteam.co.ukchris@nexteam.co.uk

Location Search

SELECT *
FROM club.venue
WHERE st_dwithin(location, $1, 2000);

https://nexteam.co.ukchris@nexteam.co.uk

AS A: repair provider

I Want: to allocate visits to different
engineers nearest to their operating
areas

So That: we can optimally allocate which
engineers attend which appointments

https://nexteam.co.ukchris@nexteam.co.uk

Location Matching

CREATE TABLE provider.engineer (
 id UUID NOT NULL,
 name TEXT NOT NULL,
 area Geometry(MultiPolygon, 4326)
);

https://nexteam.co.ukchris@nexteam.co.uk

Location Matching

SELECT *
FROM provider.engineer
WHERE st_contains(area, $1);

https://nexteam.co.ukchris@nexteam.co.uk

Location Matching

SELECT *
FROM provider.engineer
WHERE st_intersects(area,

st_buffer(
st_point(-71.104, 42.315, 4326),
0.025

)
);

https://nexteam.co.ukchris@nexteam.co.uk

Location Search / Matching - Faster

CREATE INDEX venue_location_idx
ON club.venue GIST (location);

https://nexteam.co.ukchris@nexteam.co.uk

All Together Now

SELECT *
FROM search.content
WHERE vector @@ to_tsquery('library')
AND st_dwithin(location, my_location, 2000)
AND tags @> ARRAY['service_catalogue'];

https://nexteam.co.ukchris@nexteam.co.uk

Unknown Unknowns

https://nexteam.co.ukchris@nexteam.co.uk

AS A: product owner

I Want: to be able to analyse how the
questions we ask customers effect sales

So That: we can optimise the get a quote
user flow

https://nexteam.co.ukchris@nexteam.co.uk

Unknown Unknowns

CREATE TABLE insurance.quote (
 id UUID NOT NULL,
 customer_id UUID NOT NULL,
 status STATUS NOT NULL,
 price NUMERIC NOT NULL,
 answers JSONB
);

https://nexteam.co.ukchris@nexteam.co.uk

Unknown Unknowns

SELECT count(*),
 count(*) FILTER (WHERE (answers ->> 'locks')
 IS NULL),
 count(*) FILTER (WHERE (answers ->> 'locks')
 IS NOT NULL),
 count(*) FILTER (WHERE (answers ->> 'locks')
 = '3-lever'),
 count(*) FILTER (WHERE (answers ->> 'locks')
 = 'unknown')
FROM insurance.quotes;

https://nexteam.co.ukchris@nexteam.co.uk

AS A: tech-lead

I Want: to prevent my developers
inserting invalid data

So That: we find problems, before they
really become problems

https://nexteam.co.ukchris@nexteam.co.uk

Check Constraints

ALTER TABLE insurance.quote

ADD CONSTRAINT answers_chk

CHECK (

 jsonb_typeof(answers) = 'object'

);

https://nexteam.co.ukchris@nexteam.co.uk

Stopping Things Going Wrong

https://nexteam.co.ukchris@nexteam.co.uk

AS A: customer

I Want: I don’t want to get billed twice
for my subscription

So That: should be obvious really…

https://nexteam.co.ukchris@nexteam.co.uk

Subscriptions

CREATE TABLE club.subscription (
 id UUID NOT NULL,
 member_id UUID NOT NULL,
 plan_id UUID NOT NULL,
 status STATUS NOT NULL,

…
);

https://nexteam.co.ukchris@nexteam.co.uk

Subscriptions

CREATE UNIQUE INDEX active_subs
ON club.subscription

(member_id)
WHERE status = 'active';

https://nexteam.co.ukchris@nexteam.co.uk

Invoicing With SQL

https://nexteam.co.ukchris@nexteam.co.uk

AS A: app developer

I Want: to get paid by the users of my
app

So That: all is good in the world

https://nexteam.co.ukchris@nexteam.co.uk

Generate Invoices - Writable CTEs

WITH invoice_commission AS (
 UPDATE billing.commission_record
 SET invoice_id = 123
 WHERE invoice_id IS NULL
 RETURNING *
) INSERT INTO billing.invoice
SELECT 123, current_date, sum(value) AS total
FROM invoice_commission;

https://nexteam.co.ukchris@nexteam.co.uk

Get Latest Invoice - Lateral Joins

SELECT t.*, q.*
FROM platform.tenant t
LEFT JOIN LATERAL (
 SELECT invoice_date, total
 FROM billing.invoice i
 WHERE i.tenant_id = t.id
 ORDER BY invoice_date DESC
 LIMIT 1
) q ON (true);

https://nexteam.co.ukchris@nexteam.co.uk

Tasks & Queues

https://nexteam.co.ukchris@nexteam.co.uk

AS A: platform

I Want: ensure that we process
subscription payments and payment events,
and can replay them if needed

So That: our payments handling does not
require manual intervention

https://nexteam.co.ukchris@nexteam.co.uk

Queues - A Simple Queue / Task

CREATE TABLE queue.event (
 created TIMESTAMP NOT NULL,
 updated TIMESTAMP ,
 status INTEGER NOT NULL,
 payload TEXT
);

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Fetch A Batch

SELECT ctid, * FROM queue.event
WHERE status < 5 AND (status = 0 OR
 updated < (now() - '1 hour'::INTERVAL))
ORDER BY created DESC
LIMIT 1 /* Or more */
FOR UPDATE SKIP LOCKED;

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Index Time

CREATE INDEX queue_event_idx
ON queue.event (created)
WHERE status < 5;

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Fetch A Batch
 Limit
 (cost=0.29..0.86 rows=10 width=54)
 (actual time=0.060..0.114 rows=10 loops=1)
 -> LockRows
 (cost=0.29..4920.33 rows=86401 width=54)
 (actual time=0.057..0.109 rows=10 loops=1)
 -> Index Scan Backward using queue_event_idx on event
 (cost=0.29..4056.32 rows=86401 width=54)
 (actual time=0.037..0.060 rows=10 loops=1)
 Filter: ((status < 5) AND ((status = 0) OR
 (updated < (now() - '1 hour'::interval))))
Planning Time: 0.260 ms
Execution Time: 0.179 ms

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Retry An Event

UPDATE queue.event
SET updated = now(),
 status = status + 1
WHERE ctid = '(719,117)';

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Processed An Event

UPDATE queue.event
SET updated = now(),
 status = 2147483647
WHERE ctid = '(720,2)';

https://nexteam.co.ukchris@nexteam.co.uk

Mind The Gap

https://nexteam.co.ukchris@nexteam.co.uk

AS A: DBA

I Want: efficiently store energy meter
data in PostgreSQL

So That: we don’t waste too much storage
space

https://nexteam.co.ukchris@nexteam.co.uk

Roll Ups

CREATE TABLE iot.daily_reading (
 meter_id UUID NOT NULL,
 read_range DATERANGE NOT NULL,
 energy BIGINT,
 energy_profile BIGINT[],
 PRIMARY KEY (device_id, read_range)
);

https://nexteam.co.ukchris@nexteam.co.uk

Roll Ups
t_xmin t_xmax t_cid t_xvac t_ctid t_infomask

2
t_infomask t_hoff

4 4 4 4 6 2 2 1

24 bytes

device_id read_at temperature light

16 8 4 4

32 bytes

https://nexteam.co.ukchris@nexteam.co.uk

AS A: customer

I Want: to be able to visualise my energy
consumption

So That: I can better understand how I
consume my energy and can reduce my usage

https://nexteam.co.ukchris@nexteam.co.uk

Generate Series - Presenting Data
SELECT r.device_id, t.time, array_agg(r.read_at),
 avg(r.temperature), avg(r.light)
FROM generate_series(
 '2022-10-06 00:00:00'::TIMESTAMP,
 '2022-10-07 00:00:00'::TIMESTAMP, '10 minutes') t(time)
JOIN iot.alhex_reading r
 ON (r.device_id = '26170b53-ae8f-464e-8ca6-2faeff8a4d01'::UUID
 AND r.read_at >= t.time
 AND r.read_at < (t.time + '10 minutes'))
GROUP BY 1, 2
ORDER BY t.time;

https://nexteam.co.ukchris@nexteam.co.uk

Window Functions - Roll Up

SELECT
 commission AS daily_total,
 sum(commission) OVER
 (PARTITION BY date_trunc('week', day))
 AS weekly_total
FROM billing.daily;

https://nexteam.co.ukchris@nexteam.co.uk

Window Functions - Counters

SELECT
 day,
 energy,
 energy - coalesce(lag(energy)
 OVER (ORDER BY day), 0) AS consumed
FROM iot.meter_reading
ORDER BY day;

https://nexteam.co.ukchris@nexteam.co.uk

Custom Aggregates - Mind The Gap

WITH days AS (
 SELECT t.day::DATE
 FROM generate_series('2017-01-01'::DATE,
'2017-01-15'::DATE, '1 day') t(day)
), data AS (

SELECT *
FROM iot.meter_reading
WHERE day >= '2017-01-01'::DATE

 AND day <= '2017-01-15'::DATE
)

https://nexteam.co.ukchris@nexteam.co.uk

Custom Aggregates - Mind The Gap

SELECT day,
 coalesce(energy,
 (((next_read - last_read)
 / (next_read_time - last_read_time))
 * (day - last_read_time))
 + last_read) AS energy_interpolated
FROM (
 … from next slide …
) q
ORDER BY day

https://nexteam.co.ukchris@nexteam.co.uk

Custom Aggregates - Mind The Gap
 SELECT t.day, d.energy,

last(d.day) OVER lookback AS last_read_time,
last(d.day) OVER lookforward AS next_read_time,
last(d.energy) OVER lookback AS last_read,
last(d.energy) OVER lookforward AS next_read

 FROM days t
 LEFT JOIN data d ON (t.day = d.day)
 WINDOW

lookback AS (ORDER BY t.day),
lookforward AS (ORDER BY t.day DESC)

https://nexteam.co.ukchris@nexteam.co.uk

Custom Aggregates - Mind The Gap

CREATE FUNCTION last_agg(anyelement, anyelement)
RETURNS anyelement LANGUAGE SQL IMMUTABLE STRICT AS $$
 SELECT $2;
$$;

CREATE AGGREGATE last (
 sfunc = last_agg,
 basetype = anyelement,
 stype = anyelement
);

https://nexteam.co.ukchris@nexteam.co.uk

Any Questions?

https://nexteam.co.ukchris@nexteam.co.uk

Appendix - Mind The Gap
WITH days AS (
 SELECT t.day::DATE
 FROM generate_series('2017-01-01'::DATE, '2017-01-15'::DATE, '1 day') t(day)
), data AS (

SELECT *
FROM iot.meter_reading
WHERE day >= '2017-01-01'::DATE AND day <= '2017-01-15'::DATE

)
SELECT day, coalesce(energy_import_wh, (((next_read - last_read) / (next_read_time - last_read_time)) * (day -
last_read_time)) + last_read) AS energy_import_wh_interpolated
FROM (
 SELECT t.day, d.energy_import_wh,

last(d.day) OVER lookback AS last_read_time,
last(d.day) OVER lookforward AS next_read_time,
last(d.energy_import_wh) OVER lookback AS last_read,
last(d.energy_import_wh) OVER lookforward AS next_read

 FROM days t
 LEFT JOIN data d ON (t.day = d.day)
 WINDOW

lookback AS (ORDER BY t.day),
lookforward AS (ORDER BY t.day DESC)

) q ORDER BY q.day

